INTRODUCTION

Water born diseases are caused by pathogenic microorganism that most commonly are transmitted in contaminated fresh water. Various forms of waterborne diarrheal diseases probably are the most prominent examples, and affect mainly children in developing countries.

Diarrheal diseases and hepatitis are a major cause of hospitalization & child’s death globally. Together they account for approximately one in six deaths among children younger than five years (WHO). Major risk for diarrhea and hepatitis includes environment contamination & increased exposure to enter pathogens. Viral hepatitis continues to be a major public health problem in India as well as in other part of the world. The hepatitis A virus is an enterically transmitted virus and is the major cause of acute viral hepatitis in children.

This study was designed to see the effect of water sanitation on common feco-oral transmitted diseases that is diarrhea and hepatitis.

MATERIAL AND METHOD:

This was a cross-sectional and observational study conducted in Outpatient department (OPD), Department of pediatrics, at a Medical College hospital, Gwalior with due approval from ethical committee for a period of one year (August 2012 to September 2013). Participants were children belonging to Gwalior district from both urban and rural areas, between 1 to 5 years, attending pediatric outpatient department with minor problems. Children who received HAV vaccination were excluded from study.

A total of 116 children, fulfilling inclusion criteria were recruited in the study, detailed data including age, sex, environment, source of water supply, sewage disposal and any method of water treatment at home were taken. History of diarrheal episode in last month of enrollment were also taken to find out incidence of diarrhea. History of diarrheal episode in last month of enrollment were also taken to find out incidence of diarrhea.

RESULTS

Table -1; Socioeconomic status distribution in study population and its relation to HAV seropositivity and incidence of diarrhea

<table>
<thead>
<tr>
<th>Socioeconomic class</th>
<th>Total no.</th>
<th>Anti-HAV positive</th>
<th>Incidence of Diarrhea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anti-HAV positive</td>
<td>No.(%)</td>
<td>P value</td>
</tr>
<tr>
<td>Upper [I & II]</td>
<td>22</td>
<td>94</td>
<td>12(54.5%)</td>
</tr>
<tr>
<td>Lower [III,IV & V]</td>
<td>94</td>
<td>22</td>
<td>12(54.5%)</td>
</tr>
</tbody>
</table>

Among a total of 22 children belonging to upper socioeconomic class 12 (54.50%) were seropositive for anti-HAV antibody compared to 82 (87.2%) out of 94 children belonging to lower socioeconomic class. In this study difference of positivity for anti-HAV antibody with children having a lower (class III,IV,V) SEC and upper (class I,II) SEC was statistically significant with P value 0.00075.

Among a total of 22 children belonging to upper socioeconomic class 3 (13.6%) were positive for diarrheal episode compared to 32 (34.04%) out of 94 children belonging to lower socioeconomic class, and this difference was significant.

Table -2; Correlation of method of water treatment at home with seropositivity of HAV ab and incidence of diarrhoea

<table>
<thead>
<tr>
<th>Method of water treatment</th>
<th>No. of cases 116 (100%)</th>
<th>Anti HAV Ab +ve No. (%)</th>
<th>p value</th>
<th>Incidence of diarrhoea in last month (n=35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No treatment at home</td>
<td>98 (84.48%)</td>
<td>84 (85.71%)</td>
<td>0.0036</td>
<td>33(33.6%)</td>
</tr>
<tr>
<td>Boiling</td>
<td>04 (3.44%)</td>
<td>02(50.00%)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chlorine treatment</td>
<td>00 (00%)</td>
<td>00 (00%)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mechanical filtration</td>
<td>06 (5.17%)</td>
<td>05 (83.33%)</td>
<td><0.005</td>
<td></td>
</tr>
<tr>
<td>Filtration + UV treatment</td>
<td>8 (6.89%)</td>
<td>03 (37.50%)</td>
<td>1(12.5%)</td>
<td></td>
</tr>
</tbody>
</table>

Among total 116 children, 98 were not having any treatment of water at home out of them 84 (85.71%) were seropositive for anti-HAV antibody. In our study difference of seropositivity for anti-HAV antibody with children having any method of water treatment at home and without any treatment was statistically significant with p value 0.0036.

We also take history of diarrheal episode in last month of enrollment among study cases and we found that out of 98 study subject, those were not treating drinking water, 33 had history of diarrhea while only 2 study case had diarrheal episode in last month of enrollment among 18 children those were using any method of water treatment at home. This difference was statistically significant.
Out of 54 children with municipal bore well water supply, 49 (88.88%) were seropositive for total anti-HAV antibody and out of 24 children with municipal Tighra dam supply 19 (79.16%) were seropositive compared to 26 (68.16%) out of 38 children with an inside house water supply. The difference of positivity for total anti-HAV antibody with children having outside house water supply either from municipal bore well or dam and inside house water supply was statistically significant with P value 0.026.

Similarly incidence of diarrhea is more with children having outside house water supply either from municipal bore well or dam then inside house water supply, which was statistically significant with P value 0.019.

DISCUSSION:
Several previous studies showed a clear inverse correlation between exposure to HAV and socioeconomic level. It is well known that HAV infection is strongly correlated with poverty and inadequate sanitation. In present study difference of positivity for hepatitis A IgM/IgG antibody with children having a lower [class I, II, III] class and higher [class IV, V] class was statistically significant with p value 0.00075. This result was in the line of study by C P Rath et al, Dhawan et al, showing a statistically significant difference. Similar to this study, Some studies have shown that the association between socio-economic factors, such as poor housing, crowded condition, low income and higher rate of diarrhea was statistically significant. The results are the reflection of the fact that higher socio-economic groups have better access and affordability to food hygiene and water sanitation.

In this study seropositivity was significantly lower in children living in family having source of water in their own house by personal bore well (68.16) in compared to those children with family having pipe line supply either from public bore well (88.88%) or dam supply(79.16%) suggesting probably a contamination while carrying water from outside in to the house. Similar results were observed by C P Rath et al. I J Salama et al concluded that the risk of infection with HAV was 3 times higher among children using a public water supply compared to those with piped water inside the home.

As diarrhea is acquired via contaminated water and foods, water-related factors are very important determinants of diarrhea occurrence. Increasing distance from water sources, poor storage of drinking water 10, 12, 14, 15 (e.g. obtaining water from storage containers by dipping, no drinking water storage facility), use of unsafe water sources (such as rivers, pools, dams, lakes, streams, wells and other surface water sources)16, 17 water storage in wide mouthed containers, low per capita water used 18 have been found to be risk factors for more diarrhea occurrence among children less than five. The present study also showed higher incidence of diarrhea among children using a public water supply compared to those with piped water inside the home.

In this study difference of seropositivity for anti-HAV antibody with children having any method of water treatment at home and without any treatment was statistically significant. This is the only study of its type in which impact of water treatment at home on seropositivity of anti HAV IgM/IgG antibody and incidence of diarrhea was observed.

CONCLUSIONS
Improving access to safe drinking water and adequate sanitation, as well as promoting good hygiene, are key components in preventing diarrhea and hepatitis A and other waterborne diseases as well.

REFERENCES:

Table - 3 ; Correlation of source of water supply with seropositivity of anti-HAV antibodies and incidence of diarrhoea

<table>
<thead>
<tr>
<th>Source of water supply</th>
<th>Total no.</th>
<th>Anti-HAV positive No.</th>
<th>Incidence of Diarrhoea</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Municipal bore well</td>
<td>54</td>
<td>49</td>
<td>88.88</td>
<td>19</td>
</tr>
<tr>
<td>Municipal Tighra dam supply</td>
<td>24</td>
<td>19</td>
<td>79.16</td>
<td>0.026</td>
</tr>
<tr>
<td>Personal bore well in home</td>
<td>38</td>
<td>26</td>
<td>68.16</td>
<td>5</td>
</tr>
</tbody>
</table>

Out of 54 children with municipal bore well water supply, 49 (88.88%) were seropositive for total anti-HAV antibody and out of 24 children with municipal Tighra dam supply 19 (79.16%) were seropositive compared to 26 (68.16%) out of 38 children with an inside house source of water. The difference of positivity for total anti-HAV antibody with children having outside house water supply either from municipal bore well or dam and inside house water supply was statistically significant with P value 0.026.