Spermatocytic seminoma is a rare germ cell tumor distinct from classical seminoma, both clinically and pathologically. It affects older men, has not been associated with a history of cryptorchidism, and has no known counterpart in ovary or any other site. Pathologically, it is characterized by 3 distinct cell types, lack of cytoplasmic glycogen, and scant to absent lymphocytic infiltrate. Gain of chromosome 9 is the most consistent genetic abnormality. There have been few case reports of sarcomas arising in spermatocytic seminoma and only an occasional report of metastasis. It is important to differentiate this condition from its frequent mimics, such as classic seminoma and embryonal carcinoma, because patients with spermatocytic seminoma may not require further treatment after surgery.

KEYWORDS:

- Spermatocytic seminoma
- Germ cell tumors
- Clinical features
- Histogenesis
- Immunoprofile
- Ultrastructure
- Anaplastic and sarcomatous change

ABSTRACT

Spermatocytic seminoma is a rare germ cell tumor distinct from classical seminoma, both clinically and pathologically. It affects older men, has not been associated with a history of cryptorchidism, and has no known counterpart in ovary or any other site. Pathologically, it is characterized by 3 distinct cell types, lack of cytoplasmic glycogen, and scant to absent lymphocytic infiltrate. Gain of chromosome 9 is the most consistent genetic abnormality. There have been few case reports of sarcomas arising in spermatocytic seminoma and only an occasional report of metastasis. It is important to differentiate this condition from its frequent mimics, such as classic seminoma and embryonal carcinoma, because patients with spermatocytic seminoma may not require further treatment after surgery.

HISTOPATHOLOGY

The tumor is well-circumscribed and encapsulated with rare extension into the paratesticular soft tissue. The tumor cells are noncohesive with little or no intervening stroma. Collagen bands, when present, may enclose tumor compartments, but lymphocytic infiltration and granulomatous stromal reaction are not characteristic. Typically, there are 3 types of cells (Figure 2 and 3). The predominant cell type is of medium size, 15 to 20 μm, with variable amount of dense cosinophilic cytoplasm and a round nucleus, often with a fine granular chromatin. The second type of cell is small, 6 to 8 μm, with dark-staining nuclei and scant cosinophilic cytoplasm resembling lymphocyte. The third cell type is large, 80 to 100 μm, mononucleated or, rarely, a multinucleated giant cell with round, oval, or indented nuclei. These often have the typical spiremeliike lacy chromatin distribution. Sometimes, the cells are relatively monotonous with prominent nucleoli, although wider sampling reveals characteristic areas. Mitoses including abnormal forms are frequent. "Glycogen is not demonstrable on periodic acid–Schiff stain."

IMMUNOPROFILE

Many of the markers useful in other types of germ cell tumor are generally negative in spermatocytic seminoma, including OCT3/4, AE1/AE3, and CD30 -Kit staining has been shown to be positive in around 40% of the spermatocytic seminomas. Placental alkaline phosphatase has been observed in isolated or small groups of tumor cells. The cancer-specific antigen NY-ESO-1 is found in 50% of spermatocytic seminomas but not in other germ cell tumors. Stains like α-fetoprotein, human chorionic gonadotropin, carcinoembryonic antigen, S100 protein, vimentin, epithelial membrane antigen, leukocyte common antigen, neuron-specific enolase, and human placental lactogen are not demonstrable in spermatocytic seminoma.

ANAPLASTIC AND SARCOMATOUS CHANGE

Anaplastic change is heralded by presence of prominent nucleoli in the 3 cell types seen in spermatocytic seminoma. Cells with vesicular nucleus resembling embryonal carcinoma, bizarre giant cells, areas of necrosis, and frequent mitosis, including abnormal forms and blood vessel invasion, are also seen. These features are not absolute and can be rarely seen in conventional spermatocytic seminomas. Sarcomatous change in spermatocytic seminoma is characterized by the presence of 2 components. One component is typical spermatocytic seminoma. The second component usually comprises undifferentiated sarcomatous elements and, occasionally, more differentiated sarcoma such as rhabdomyosarcoma. Such change confers a worse prognosis and is often lethal.

ULTRASTRUCTURE

The most important ultrastructural features are prominent nucleoli with dispersed nucleolomer and specialized cell junctions of the zonula adherens type, true intercellular bridges, identical to those normally found between spermatocytes and between spermatids. Comparison of these findings with ultrastructure of classic seminomas

HISTOPATHOLOGY

The tumor is well-circumscribed and encapsulated with rare extension into the paratesticular soft tissue. The tumor cells are noncohesive with little or no intervening stroma. Collagen bands, when present, may enclose tumor compartments, but lymphocytic infiltration and granulomatous stromal reaction are not characteristic. Typically, there are 3 types of cells (Figure 2 and 3). The predominant cell type is of medium size, 15 to 20 μm, with variable amount of dense cosinophilic cytoplasm and a round nucleus, often with a fine granular chromatin. The second type of cell is small, 6 to 8 μm, with dark-staining nuclei and scant cosinophilic cytoplasm resembling lymphocyte. The third cell type is large, 80 to 100 μm, mononucleated or, rarely, a multinucleated giant cell with round, oval, or indented nuclei. These often have the typical spiremeliike lacy chromatin distribution. Sometimes, the cells are relatively monotonous with prominent nucleoli, although wider sampling reveals characteristic areas. Mitoses including abnormal forms are frequent. "Glycogen is not demonstrable on periodic acid–Schiff stain."

IMMUNOPROFILE

Many of the markers useful in other types of germ cell tumor are generally negative in spermatocytic seminoma, including OCT3/4, AE1/AE3, and CD30 -Kit staining has been shown to be positive in around 40% of the spermatocytic seminomas. Placental alkaline phosphatase has been observed in isolated or small groups of tumor cells. The cancer-specific antigen NY-ESO-1 is found in 50% of spermatocytic seminomas but not in other germ cell tumors. Stains like α-fetoprotein, human chorionic gonadotropin, carcinoembryonic antigen, S100 protein, vimentin, epithelial membrane antigen, leukocyte common antigen, neuron-specific enolase, and human placental lactogen are not demonstrable in spermatocytic seminoma.

ANAPLASTIC AND SARCOMATOUS CHANGE

Anaplastic change is heralded by presence of prominent nucleoli in the 3 cell types seen in spermatocytic seminoma. Cells with vesicular nucleus resembling embryonal carcinoma, bizarre giant cells, areas of necrosis, and frequent mitosis, including abnormal forms and blood vessel invasion, are also seen. These features are not absolute and can be rarely seen in conventional spermatocytic seminomas. Sarcomatous change in spermatocytic seminoma is characterized by the presence of 2 components. One component is typical spermatocytic seminoma. The second component usually comprises undifferentiated sarcomatous elements and, occasionally, more differentiated sarcoma such as rhabdomyosarcoma. Such change confers a worse prognosis and is often lethal.

ULTRASTRUCTURE

The most important ultrastructural features are prominent nucleoli with dispersed nucleolomer and specialized cell junctions of the zonula adherens type, true intercellular bridges, identical to those normally found between spermatocytes and between spermatids. Comparison of these findings with ultrastructure of classic seminomas

ABSTRACT

Spermatocytic seminoma is a rare germ cell tumor distinct from classical seminoma, both clinically and pathologically. It affects older men, has not been associated with a history of cryptorchidism, and has no known counterpart in ovary or any other site. Pathologically, it is characterized by 3 distinct cell types, lack of cytoplasmic glycogen, and scant to absent lymphocytic infiltrate. Gain of chromosome 9 is the most consistent genetic abnormality. There have been few case reports of sarcomas arising in spermatocytic seminoma and only an occasional report of metastasis. It is important to differentiate this condition from its frequent mimics, such as classic seminoma and embryonal carcinoma, because patients with spermatocytic seminoma may not require further treatment after surgery.
suggests that both originate from the same cell type but also indicates that spermatocytic seminoma is a tumor distinct from the former by virtue of its greater differentiation.17

DIFFERENTIAL DIAGNOSIS
Spermatocytic seminoma is most commonly misinterpreted as typical seminoma, embryonal carcinoma, or lymphoma. The distinction of spermatocytic seminoma from other forms of testicular germ cell tumor is important because spermatocytic seminomas, unless complicated by sarcomatous transformation, lack the capacity to metastasize and therefore are adequately treated by orchietomy alone without any form of adjuvant therapy. Spermatocytic seminoma lacks the features of classic seminoma including a fibrous stroma, lymphocytic and/or granulomatous stromal reaction, cells with abundant glycogen, positivity for placental alkaline phosphatase, and intratubular germ cell neoplasia component. Unlike many usual seminomas, the cytoplasm in spermatocytic seminoma is typically dense and amphiphilic rather than clear.2

Lymphoma has a predominant interstitial growth pattern with a relatively monotonous cell population that lacks the lacy chromatin distribution. Relatively monomorphic examples of spermatocytic seminoma may particularly be misdiagnosed because they have a sheetlike arrangement of large tumor cells with round nuclei, prominent nucleoli, and frequent mitotic figures but they are negative for leukocyte common antigen.2

Embryonal carcinoma lacks the 3 different types of cells described in spermatocytic seminoma.

GENETICS
The gain of chromosome 9 appears to be a consistent finding in all spermatocytic seminomas, which is not found in classic seminomas.3 Genetic abnormalities include gain of X chromosome.

TREATMENT AND PROGNOSIS
Spermatocytic seminomas rarely metastasize and hence orchidectomy alone is indicated for treatment.7

SUMMARY AND CONCLUSION
Spermatocytic seminoma is a rare testicular tumor that poses a diagnostic challenge. It should be considered, especially while evaluating germ cell tumor in older men. It is distinct in its histologic appearance with 3 different cell types, lack of cytoplasmic glycogen, and sparse or absent lymphocytic infiltrate. Since it rarely metastasizes or undergoes sarcomatous differentiation, correct histologic diagnosis can have great impact on treatment and prognosis.

Grossly, spermatocytic seminomas are often homogenous, solid, pale grey (FIG. 1).

FIGURE 2. Spermatocytic seminoma consisting of sheets of round cells.

FIGURE 3. Spermatocytic seminoma is composed of 3 sizes of cells: small, medium, and large. Most nuclei are spherical

References