Introduction. Over 109 years ago Sir Henry Head and Rivers’ paper was published. It showed that sections of their own peripheral nerves produced different areas of sensory loss: for pain less than touch or temperature. Photographs presented depicted outer marginal zones larger for tactile or temperature sensory loss; these were named intermediate. Pain sensory loss zone occupied the centre and was called autonomous. This work appeared in Brain in 1908, resulting thereafter in Head’s epicritic versus protopathic theory which suggested nature created one sensation more important than the other. It was commented adversely multiple times by various authors such as Trotter, and Walsh, who delivered a definite denial in 1942, much later by Compston.

After years of investigating the peripheral nervous system and its clinical aspects, we realized it was easier to compare the two zones by using cold sensation instead of touch. In 2013 we published in Neurologia Argentina a paper on 87 cases of Multiple Mononeuropathy complicated frequently by glove and stocking polyneuropathy. For that paper we reported intermediate zone loss for pain in 58 per cent of the cases, only 42% for cold, apparently disagreeing with the original description published by Head and Rivers. Suspecting this disagreement could dim our admiration for these authors, we decided to settle the matter by reporting our results.

Keywords: Pain, cold, intermediate, autonomous, sensation, Head’s theory.

Material and methods. Throughout the 2013-2017 period, 1428 new patients were recorded for their gender, race and age, and were examined using the Medical Research Council aids for peripheral nerve injuries to identify affected individual nerves. To delimit sensory losses, pain was first studied by prickling from midpoint outwards with a plastic straw section, cut (with scissors) at a 45° angle. Cold loss measuring followed, asking patient to report when the edge of a steel tuning fork (1 cm wide arm) began to feel colder, while applying it from oval midpoint towards its periphery. Photographs presented depicted outer marginal zones larger for tactile or temperature sensory loss; these were named intermediate. Pain sensory loss zone occupied the centre and was called autonomous. This work appeared in Brain in 1908, resulting thereafter in Head’s epicritic versus protopathic theory which suggested nature created one sensation more important than the other. It was commented adversely multiple times by various authors such as Trotter, and Walsh, who delivered a definite denial in 1942, much later by Compston.

Keywords: Pain, cold, intermediate, autonomous, sensation, Head’s theory.
Hiperuricemia, x) Carcinomatous neuropathy (CN), xi) Neurological degenerative diseases like Parkinson’s (PD), xii) Charcot Marie Tooth (CMT)

Results. Included clinical cases studied totalled 244: 163 classified as Multiple Mononeuritis, 69 as Polyneuritis with Meralgia Paresthetica; 12 polyneuritis with only glove/stocking losses were excluded. There were more women than men, 141 vs 103, more Caucasians than non-Caucasians 143 vs.101 but there was no significant difference for gender (P 0.001). There is some significant difference between race and intermediate zone loss of temperature (P 0.322).

Average age in the total sample was 51.85. (Median 52 years, standard deviation 18, most frequent 45, youngest 96, oldest). Regarding age there is an important significant difference between age and intermediate loss of pain (P 0.478). A result much less important, practically neutral, is of no significance between age and intermediate loss of temperature (P 0.300). These results found for race and age, and in particular, average age of 51, are very similar to those 87 cases due to iron profile disturbances published in Neurología Argentina.

In Mononeuritis Multiplex, except for 13 facial motor nerves and 12 auditory nerves, the distribution of 700 affected sensory peripheral nerves was: 398 lateral femoral, 68 trigeminal, 65 musculo-cutaneous, 47 peroneal, 46 ulnar, 36 axillary, 16 median, 9 radial, 7 cervical, 6 intercostals and 2 saphenous. Signs of autonomic disturbance with Myositis were recorded in 12 patients. Intermediate zone loss for pain appeared in 365 (52.1%) nerves, more frequent than cold zone, which prevailed in 335 (47.9%). With no obvious significant difference: there is a compelling suggestion of equal damage occurrence for small Aδ and C fibres.

Distribution of the 13 aetiological factors was led by a disturbance of iron metabolic profile (DIMP) in 93 cases, followed by 85 Helicobacter, 51 B12 deficits, 43 HiperIgEemia, 41 Streptococcal and other infections, 23 Diabetes M, 20 late Syphilis, 12 Thyroid disorders, 15 Gout, 8 Parkinson diseases (PD), 11 Carcinomatous neuropathy, 7 Charcot Marie T, and 6 seucuela of MFS or GBS.

The following had average ages older than the 51-8 years quoted above: Helicobacter, Diabetes, late Syphilis, Gout, Parkinson and Carcinomatous neuropathy. Disturbed Iron Metabolic Profile had the same age of 51, while B12 deficit, HiperIgEemia, Streptococcal and other infections, Hypothyroidism, Charcot Marie and MF/GBS seucuela had less age. Our results confirm the evidence of multiple causes of extensive peripheral nerve damage in MM and polyneuropathy with bilateral Meralgia. Regarding its pathology we suspect that, along with age, Cytokines mentioned in our publications x,x6 could damage the distal small diameter sensory fibres, as well as the central somato-sensory and nociceptive pathways.

Conclusions. The results in this paper indicate that ageing seems to be an important aetiological factor, turning fine Aδ delta and C fibres vulnerable after 51 years of age. We could postulate for Sir Henry, that when conducting his self experiment, he was only in his early forties and thus his fine fibres had not become vulnerable, therefore the difference in his results from ours.

Acknowledgements. To Ms Maria Luisa Santoni for help in the text, and Sociologist Victor Ruiz for providing statistical review.

References