INTRODUCTION
Cancer is a class of disease characterized by uncontrolled cell division and these cells have the ability to invade other tissues by migration to distant sites by metastasis. Epithelial carcinoma of head and neck arises from the mucosal surfaces and typically are of squamous cell origin. The category includes tumours of the paranasal sinuses, oral cavity, nasopharynx, oropharynx and larynx.¹

Alcohol and tobacco use are the most common risk factors for head and neck cancers. Smokeless tobacco is an etiologic agent for oral cancers.² Other potential carcinogens include marijuana and other occupational exposures such as nickel refining, textile fibres and woodworking. Dietary factors like low consumption of fruits and vegetables may also contribute to head and neck cancer. Some head and cancer may have viral aetiology. The DNA of human papilloma virus has been detected in the tissue of oral cancers. Other potential carcinogens include marijuana and smokeless tobacco is an etiologic agent for oral cancers.³

Patients with head and neck cancer receive chemotherapy usually with cisplatin and 5-flourouracil. Most patients who receive three cycles of cisplatin and 5-flourouracil show tumour reduction and the response is clinically complete in up to half.³

Cisplatin based chemotherapy is commonly associated with severe electrolyte abnormalities including hyponatremia, hypokalaeemia, hypomagnesemia, hypocalcaemia, Fanconni like syndrome and acute renal failure.¹ Cisplatin is a tubular nephrotoxin and causes dose dependent nephrotoxicity by particularly affecting the S3 segment of the proximal tubule and to a lesser extent the loop of Henle and the distal collecting system. This is clinically manifested by reduced GFR causing a rise in serum creatinine and salt wasting due to impaired absorption of sodium in the proximal tubule and the loop of Henle leading to urinary concentration defect. Cisplatin may cause decrease in the number of aquaporin channels in the cortical and medullary collecting duct, thereby further contributing to impaired urinary concentration and polyauria.⁴ This may in fact limit the degree of hyponatremia (secondary to decreased water reabsorption) that develops with salt wasting from proximal tubule dysfunction.⁵ Cisplatin is a common cause of hypomagnesemia and hypokalemia due to renal magnesium and potassium losses.⁶ Magnesium plays an important role in the maintenance of intracellular potassium. Unrecognized and untreated magnesium depletion may lead to a refractory potassium depletion.

AIMS AND OBJECTIVE
1. To determine and compare the concentration of serum chloride and magnesium in head and neck cancer patients before and after cisplatin and 5-flourouracil chemotherapy.
2. To find out the impact of cisplatin and 5-flourouracil in serum chloride and magnesium concentration in head and neck cancer patients.

MATERIALS AND METHODS
The present study was conducted in the department of Biochemistry, in collaboration with the department of Otorhinolaryngology, Assam Medical College and Hospital. Fifty (50) patients having histologically proved squamous cell carcinoma of head and neck below 70 years of age attending the department of Otorhinolaryngology were taken into account. Values of serum chloride and magnesium were compared before and after 1st, 2nd and 3rd cycle of cisplatin and 5-flourouracil chemotherapy.

chloride and magnesium levels were decreased after all the cycles. Paired t test was performed for statistical analysis. P value (<0,001) was found to be highly significant. Mean serum creatinine levels were increased after the chemotherapy which is also significant. Our study revealed that hypochloremia and hypomagnesemia are the common electrolyte disturbances with cisplatin and 5-flourouracil chemotherapy in head and neck cancer patients. So, close monitoring of renal function and estimation of electrolytes after chemotherapy is recommended.

ASSUMPTIONS
Presence of distant metastases.
Second primary tumour.
Prior anti-cancer treatment.
No active ischaemic heart disease.
No myocardial infarction within the past 6 months.
Presence of any renal disease.
No active infection.
Estimation of serum chloride by ion selective technology.

Estimation of serum magnesium by Calmagite method.

(Manufacturer: Coral Clinical Systems, Gitanjali, Dr. Antonio Do Rego Bagh, Bambolim Complex, Goa-403202)

Estimation of serum Creatinine by alkaline picrate method

(Manufacturer: Coral Clinical Systems, Gitanjali, Dr. Antonio Do Rego Bagh, Bambolim Complex, Goa-403202)

RESULTS

Age and sex distribution of the subjects: It was found that the maximum number of cases 27 (54%) were in the age group of 60 – 70 years, followed by 14 (28%) in the age group of 50 – 59 years and 9 (18%) below 50 years. Out of total 50 cases, 38 (76%) were male and 12 (24%) were female.

In the present study of 50 cases, all were histopathologically proved to be squamous cell carcinoma and distributed at the different sites as shown in table 1.

Hypopharynx is the commonest site with 18 (36%) patients and maxillary sinus the least with 2 (4%) patients.

Values of serum chloride and magnesium were compared before and after 1st, 2nd and 3rd cycle cisplatin and 5-fluorouracil chemotherapy. Mean serum chloride and magnesium levels were decreased after all the cycles. Paired t test was performed for statistical analysis. P value was found to be highly significant. Mean serum creatinine levels were increased after the chemotherapy which is also significant.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Cycles</th>
<th>Mean ± S.D. Before cisplatin 5FU</th>
<th>Mean ± S.D. After cisplatin 5FU</th>
<th>‘p’ value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum chloride</td>
<td>1st</td>
<td>101 ± 1.59</td>
<td>99.69 ± 1.93</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>(mmol/L)</td>
<td>2nd</td>
<td>100.74 ± 1.66</td>
<td>98.85 ± 1.85</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>101.71 ± 1.96</td>
<td>99.63 ± 1.93</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Serum magnesium</td>
<td>1st</td>
<td>2.28 ± 0.26</td>
<td>1.85 ± 0.23</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>(mg/dL)</td>
<td>2nd</td>
<td>2.57 ± 0.27</td>
<td>1.89 ± 0.27</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>2.37 ± 0.31</td>
<td>1.87 ± 0.29</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Serum creatinine</td>
<td>1st</td>
<td>0.82 ± 0.14</td>
<td>1.16 ± 0.24</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>(mg/dL)</td>
<td>2nd</td>
<td>0.84 ± 0.14</td>
<td>1.14 ± 0.21</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>0.77 ± 0.17</td>
<td>1.15 ± 0.21</td>
<td>&lt;0.0001</td>
</tr>
</tbody>
</table>

DISCUSSION

Cancer is a disease of old age, but several authorities have reported in the young age too. Baruah et al (1964) has found the highest incidence in the age group of 41 – 50 years. Gadagule and Agarwal et al (1959) has found that the average to be 52.8 years. In this series, the peak incidence was found in the age group of 60 – 70 years.

There is a general agreement in the literature of a higher male preponderance of squamous cell carcinoma of head and neck region. Paymaster et al (1971) reports male to female ratio as 9:1 in his series. In this series the male to female ratio was 3.17:1.

Paymaster et al (1971) has found highest incidence in hypopharyngeal region. Our study showed 36% hypopharyngeal cancer, 22% in larynx, 20% in oropharynx, 10% in nasopharynx, 8% in oral cavity and 2% in maxillary sinus.

Renal toxicity is a common and dose-limiting feature of cisplatin. It may be acute or late onset electrolyte imbalance. Acute fluid and electrolyte imbalances seen during first 24 hours period after chemotherapy, late symptoms occur more than 24 hours after chemotherapy and can last for up to 3 – 7 days. In our study, serum chloride and magnesium were evaluated during first 24 hours of cisplatin chemotherapy.

Serum chloride levels showed obvious and progressive decline in our patients. In previous studies, authors have found that both renal salt wasting syndrome and syndrome of inappropriate antidiuretic hormone secretion have been reported as the underlying mechanism for cisplatin chemotherapy induced hyponatremia, and may be an indicator of the hypochloremia in the present study.

Our study showed a significant decrease in serum magnesium upon cisplatin and 5-fluorouracil chemotherapy. We observed hypomagnesemia in up to 47.66% receiving chemotherapy. Asim Jamil Shaikh et al found hypomagnesemia in 54.3%. Our study results were in accordance with the study of Gomez Campdera et al.

Magnesium plays an important role in the maintenance of intracellular K’level. Concomitant Mg” deficiency in K’- depleted patients ranged from 38% to 42%. It is recommended that serum Mg” is routinely assessed, and that until serum Mg” is measured consideration should be given to treating hypokalemic
In present study, we also analyzed serum creatinine to assess renal function and excretion of this component is the function of lean body mass in normal person. In our study, creatinine was increased significantly (46%) after cisplatin treatment which may be due to acute nephrotoxicity.

CONCLUSION

Our study revealed that hypochloremia and hypomagnesemia are the common electrolyte disturbances with cisplatin and 5fluorouracil chemotherapy in head and neck cancer patients. These adverse reactions may range from mild to potentially fatal. This chemotherapy regimen may induce magnesium depletion and magnesium deficiency itself may enhance nephrotoxicity. Cisplatin and 5fluorouracil chemotherapy may cause acute tubular necrosis, restricting the tubule’s ability to reabsorb water, magnesium and other electrolytes resulting in electrolyte abnormality that may become chronic. So, close monitoring of renal function and estimation of electrolytes after chemotherapy is recommended.

REFERENCES